

High performance switches for microwave and RF instrumentation and systems

Agilent Technologies offers a versatile line of multiport coaxial switches. These 50Ω mechanical-latching switches come with the performance and reliability that you have come to expect in Agilent microwave accessories.

Offering excellent electrical and mechanical performance with broadband operation, high isolation, low SWR, long life, and exceptional repeatability, these switches are designed with your applications in mind. Frequency ranges are available to 4 GHz and 18 GHz for the A and B models with SMA connectors and to 26.5 GHz for the C models with APC-3.5 connectors.

The 8762A, 8762B, and 8762C
(Figure 1) are single-pole doublethrow switches with high isolation, $>100 \mathrm{~dB}$ at 4 GHz for the A model,

Agilent 8762/3/4A,B,C Coaxial Switches

Technical Overview

$>90 \mathrm{~dB}$ at 18 GHz for the B model and $>50 \mathrm{~dB}$ at 26.5 GHz for the C model. All models terminate the unused port with 50Ω, a key feature for your applications where low SWR is required on all ports.

Figure 1. Agilent 8762

The 8763A, 8763B, and 8763C
(Figure 2) have 4 RF ports with one internal 50Ω termination designed for applications requiring a transfer switch or a cross switching element.

Figure 2. Agilent 8763

Agilent Technologies

The 8764A, 8764B, and 8764C
(Figure 3) round out the family with 5 RF ports, giving you flexibility to configure the switch for your specific needs.

Figure 3. Agilent 8764

Applications

Multi-source switching

The $8762 \mathrm{~A}, 8762$ B or 8762 C is an excellent choice for applications where you require selection of multiple signal sources, frequency counters, or signal control devices such as modulators or filters, or routing signals from multiple sources as shown in Figure 4.

Figure 4. Multi-source switching

Transfer switching

For applications requiring a "transfer switch," as shown in Figure 5, an $8763 \mathrm{~A}, \mathrm{~B}$, or C is the ideal choice to insert a component, such as a filter or mixer, into a signal path. Another popular use is to switch between a device under test and a through path for system calibration. The 8763A,B,C's internal load can terminate the device under test when in the through mode (up to 1 watt).

Figure 5. Agilent 8763 used as a transfer switch
(equivalent circuit action)

Figure 6. Signal reversal

Reverse signal path

Figure 6 shows how an 8762 and 8764 may be used to provide a "transceiver" configuration. This example illustrates how one amplifier can be used to transmit or receive. Any application where the signal path direction needs to be reversed could use this configuration.

Portable and remote applications

Due to their small package size, light weight, low power consumption, and high reliability, these switches are ideal for your portable or remote applications. The light weight and repeatability make them well suited for portable spectrum analyzers and other portable microwave test equipment. Their $1,000,000$ cycle life make them the ideal candidate for system design, such as communications repeaters or remote monitoring stations that demand minimal maintenance. The switch's automatic coil disconnect feature and low current drain during switching minimize the amount of power needed for operating the switches.

Dedicated switching

For larger switching systems, where many switches will be used to provide complex signal routing, a switch driver such as the 87130A or 70611 A is recommended. The 87130A rack-and-stack switch driver and the MMS-based 70611A are convenient, flexible interface bus (GPIB) or modular systems interface bus (MS-IB) switch controllers, providing driver circuitry, indicator readback circuitry and firmware that makes it easy to integrate switch components into a switching system. Controlling the 87130A is simple using either a PC or workstation based GPIB controller and Agilent Interactive Test Generator (Agilent-ITG) or Agilent Visual Engineering Environment (Agilent VEE). The 70611A gives manual control via the MMS user interface or can also be controlled via an GPIB equipped PC or workstation.

In addition, the built-in firmware makes it possible to define often used switch paths. With the path command, macros can be designed which open and close the right solenoids to select the desired switch port, and the path may be given a meaningful name. Remember that only one select pin should be activated at one time to prevent rapid cycling of the switch.

Both the 87130A and 70611A provide position monitoring and reporting, which make it possible for a program to determine if all the switches are in their proper state (position) before the program continues with testing. A programmable wake up condition makes it possible to ensure that the matrix or switching system starts up in a predetermined state, to prevent damage to delicate equipment from excessive power. This would also be the state that the system returns to after a power interruption.

Accessory cables and adapters make it easy to quickly get the $8762 / 3 / 4$ working with the 87130A or 70611A. Reference literature number 59632038E, Switch Attenuator Driver Configuration Guide.

For smaller switching needs, the 11713B/C attenuator/switch controller provides simple GPIB control for up to ten $8762 / 3 / 4$ switches. Connecting cables can be ordered which make it easy to connect the switches to the 11713B/C. Refer to literature number 5958-7277EN, Agilent 11713B/C Attenuator/ Switch Drivers Configuration Guide.

Operation and use

How the switch works

All the switches are "break before make;" the switched ports are not connected to each other preventing possible damage to sensitive circuits. The standard configuration switch uses 24 Vdc for the switching voltage, Option 876xx-011 ${ }^{1}$ specifies a voltage of 5 Vdc , and Option $876 \mathrm{xx}-015$ specifies 15 Vdc. Options 876xx-T15 and 876xx-T24 are TTL/5V CMOS compatible with 15 Vdc and 24 Vdc drive respectively.

Driving the switch

For standard, Options 876xx-011 and $876 x x-015$ switches, switching is accomplished by applying the supply voltage to pin "C" and grounding the appropriate pin to actuate the switching mechanism. Avoid grounding both RF path select pins as rapid cycling may occur. After the switch is fully latched (30 ms), the drive current is automatically disconnected. If the drive circuit is pulsed, the pulse duration must be at least 30 ms to ensure that the switch will fully latch. For TTL/5 volt CMOS compatible drive (Options 876xx-T24 and 876xx-T15), apply the supply voltage to pin "C," and ground to pin \#1. Switch positions by applying a TTL "high" or TTL "low" to pin \#2 as needed. See Table 1.

Remote indication (TTL options excluded) The position of the switch may be determined by utilizing the open and closed states of the internal coil contacts. Figure 7 displays two indicator circuits, one to provide a TTL output and one that directly activates an LED. The circuits will output a TTL "HI" and LED "on" if the switch is in the state shown in Figure 7. When drive pin 1 contact is closed (as shown), RF port 2 is connected to common port. For the Agilent 8763/4, see Figures 2, 3, and Table 1 for corresponding RF port connections. The circuits shown are designed to operate with coil voltage of 24 V . If other voltage switches are used, the circuit components must be modified to accommodate that voltage.

Since current is drawn through the solenoid for these indicator circuits, inadvertent switching is prevented by limiting the current to 5 mA . Additional design information may be required from the component manufacturer for the circuits described in Figure 7, depending upon specific applications. Agilent Technologies assumes no responsibility for use of any circuits described herein, and makes no representations or warranties, expressed or implied, that such circuits are free from patent infringements.

Figure 7. TTL and LED remote indicator circuits

Model number	Pin 1	Pin 2	Pin 2^{2}	RF path
8762A/B/C	Ground	Open	TTL high	1 to C closed
				2 terminated
	Open	Ground	TTL low	2 to C closed
				1 terminated
8763A/B/C	Ground	Open	TTL high	1 to 2 closed
				3 to 4 closed
	Open	Ground	TTL low	1 terminated
				2 to 3 closed
				4 open
8764A/B/C	Ground	Open	TTL high	1 open
				2 to 3 closed
				4 to 5 closed
	Open	Ground	TTL low	1 to 2 closed
				3 to 4 closed

Table 1. Switching logic table

Figure 8. Control voltage states

1. Pin 1 is always at ground.
2. See Figure 8 for control voltage states.

Specifications

Agilent model numbers	8762A 8763A 8764A	8762B 8763B 8764B	$\begin{aligned} & \text { 8762C } \\ & \text { 8763C } \\ & 8764 \mathrm{C} \end{aligned}$
Frequency range	dc to 4 GHz	dc to 18 GHz	dc to 26.5 GHz
Insertion loss	$\begin{aligned} & <0.20 \mathrm{~dB}, \text { dc to } 2 \mathrm{GHz} \\ & <0.25 \mathrm{~dB}, 2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.20 \mathrm{~dB}, \text { dc to } 2 \mathrm{GHz} \\ & <0.50 \mathrm{~dB}, 2 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <0.25 \mathrm{~dB}, \text { dc to } 2 \mathrm{GHz} \\ & <0.50 \mathrm{~dB}, 2 \text { to } 18 \mathrm{GHz} \\ & <1.25 \mathrm{~dB}, 18 \text { to } 26.5 \mathrm{GHz} \end{aligned}$
Isolation between ports	$>100 \mathrm{~dB}$, dc to 4 GHz	$>90 \mathrm{~dB}$, dc to 18 GHz	$\begin{aligned} & >90 \mathrm{~dB}, \text { dc to } 18 \mathrm{GHz} \\ & >50 \mathrm{~dB}, 18 \text { to } 26.5 \mathrm{GHz} \end{aligned}$
SWR through line	$\begin{aligned} & <1.10, \text { dc to } 2 \mathrm{GHz} \\ & <1.20,2 \text { to } 4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.10, \text { dc to } 2 \mathrm{GHz} \\ & <1.20,2 \text { to } 12.4 \mathrm{GHz} \\ & <1.30,12.4 \text { to } 18 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15, \text { dc to } 2 \mathrm{GHz} \\ & <1.25,2 \text { to } 12.4 \mathrm{GHz} \\ & <1.40,12.4 \text { to } 18 \mathrm{GHz} \\ & <1.80,18 \text { to } 26.5 \mathrm{GHz} \end{aligned}$
Into internal 50Ω load (8762s and 8763s)	$\begin{aligned} & <1.10, \text { dc to } 2 \mathrm{GHz} \\ & <1.20,2 \text { to } 4 \end{aligned}$	$\begin{aligned} & <1.10, \text { dc to } 2 \mathrm{GHz} \\ & <1.20,2 \text { to } 12.4 \mathrm{GHz} \end{aligned}$	$\begin{aligned} & <1.15, \text { dc to } 2 \mathrm{GHz} \\ & <1.25,2 \text { to } 12.4 \mathrm{GHz} \\ & <1.30,12.4 \text { to } 18 \mathrm{GHz} \\ & <1.80,1826.5 \mathrm{GHz} \end{aligned}$
Connectors	SMA (f)	SMA (f)	3.5 mm (f)
$\begin{aligned} & \text { Insertion loss repeatability } \\ & \text { dc to } 18 \mathrm{GHz} \\ & 18 \text { to } 26.5 \mathrm{GHz} \\ & \text { (Up to } 1,000,000 \text { cycles measured at } 25^{\circ} \mathrm{C} \text {) } \end{aligned}$	0.03 dB maximum	0.03 dB maximum	0.03 dB maximum 0.5 dB maximum

General operating data

Maximum power rating	1 watt average; 100 watts peak (not to exceed average power rating); +7 Vdc
Life	$1,000,000$ cycles minimum
Switching solenoid	Switching speed 30 ms maximum

Switch drive data

Parameter	Test conditions	Minimum	Nominal	Maximum	Units
Supply voltage					
Option 876xx-024 or 876xx-T24		20	24	32	V
Options 876xx-015/876xx-T15		12	15	20	V
Option 876xx-011		4.5	5	7	V
Supply current Switching; pulse width ≥ 30 ms maximum					
Option 876xx-024 or 876xx-T24	@ Vcc = 24 Vdc		120		mA
Option 876xx-015/876xx-T15	$@ \mathrm{Vcc}=15 \mathrm{Vdc}$		182		mA
Option 876xx-011	$@ \mathrm{Vcc}=5 \mathrm{Vdc}$		400		mA
Impedance					
Option 876xx-024 or 876xx-T24			200		ohm
			127		mH
Option 876xx-015, Option 876xx-T15			82		ohm
			57		mH
Option 876xx-011			13		ohm
			8		mH

Options 876xx-T15 and 876xx-T24

| High-level input | | 3 | V |
| :--- | :--- | :--- | :---: | :---: |
| Low-level input | | 0.4 | V |
| Max high input current | $V_{c c}=\mathrm{Max}$ | 300 | $\mu \mathrm{~A}$ |
| | $V_{\text {input }}=7.0 \mathrm{Vdc}$ | | |
| Supply current (quiescent) | $V_{\text {input }}=0.0$ | 2.0 | mA |
| | $V_{\text {input }}=7.0$ | 50 | $\mu \mathrm{~A}$ |

Operating	Humidity	Vibration	Shock
temperature	95% RH, $40{ }^{\circ} \mathrm{C}$,	0.05°,	50 g ,
-25 to $+75^{\circ} \mathrm{C}$	5 days	10 to 55^{Hz}	3 ms

Physical specifications

Dimensions:	Per Figure 9
Weight:	$245 \mathrm{~g}(9 \mathrm{oz})$.

Agilent 8762 series

Figure 9. Product outlines

Ordering Information
8762A/B/C
8763A/B/C
8764A/B/C
Frequency range
A models: 4 GHz
B models: 18 GHz
C models: 26.5 GHz

Option

Option 011: 5 Vdc
Option 015: 15 Vdc
Option 024: 24 Vdc
Option T15: TTl/5V CMOS compatible with 15 Vdc supply
Option T24: TTL/5V CMOS compatible with 24 Vdc supply
Option UK6: Commercial calibration test data with certificate

Related Literature

Agilent RF and Microwave Switch Selection Guide, literature number 5989-6031EN

Agilent Email Updates

www.agilent.com/find/emailupdates Get the latest information on the products and applications you select.

Agilent Direct

www.agilent.com/find/agilentdirect Quickly choose and use your test equipment solutions with confidence.

www.agilent.com/find/open
Agilent Open simplifies the process of connecting and programming test systems to help engineers design, validate and manufacture electronic products. Agilent offers open connectivity for a broad range of system-ready instruments, open industry software, PC-standard I/O and global support, which are combined to more easily integrate test system development.

LXI

www.lxistandard.org
LXI is the LAN-based successor to GPIB, providing faster, more efficient connectivity. Agilent is a founding member of the LXI consortium.

Remove all doubt

Our repair and calibration services will get your equipment back to you, performing like new, when promised. You will get full value out of your Agilent equipment throughout its lifetime. Your equipment will be serviced by Agilent-trained technicians using the latest factory calibration procedures, automated repair diagnostics and genuine parts. You will always have the utmost confidence in your measurements.

Agilent offers a wide range of additional expert test and measurement services for your equipment, including initial start-up assistance, onsite education and training, as well as design, system integration, and project management.

For more information on repair and calibration services, go to:
www.agilent.com/find/removealldoubt

www.agilent.com

www.agilent.com/find/mta
For more information on Agilent Technologies' products, applications or services, please contact your local Agilent office. The complete list is available at:
www.agilent.com/find/contactus

Americas

Canada	$(877) 894-4414$
Latin America	3052697500
United States	$(800) 829-4444$

Asia Pacific

Australia	1800629485
China	8008100189
Hong Kong	800938693
India	1800112929
Japan	$0120(421) 345$
Korea	0807690800
Malaysia	1800888848
Singapore	18003758100
Taiwan	0800047866
Thailand	1800226008

Europe \& Middle East

Austria	013602771571
Belgium	32 (0) 24049340
Denmark	4570131515
Finland	358 (0) 108552100
France	0825010 700*
	*0.125 €/minute
Germany	070314646333
Ireland	1890924204
Israel	972-3-9288-504/544
Italy	390292608484
Netherlands	31 (0) 205472111
Spain	34 (91) 6313300
Sweden	0200-88 2255
Switzerland	0800805353
United Kingdom	44 (0) 1189276201
Other European Countries:	
www.agilent.com/find/contactus	

Revised: March 24, 2009
Product specifications and descriptions in this document subject to change without notice.
© Agilent Technologies, Inc. 2001, 2002, 2009
Printed in USA, April 3, 2009
5952-1873E

